| @@ -15,20 +15,20 @@ def sinus_cosinus(x): | |||
| def swish(x): | |||
| return(x*tf.math.sigmoid(x)) | |||
| def arima_pred(x_train,y_test): | |||
| train = x_train | |||
| def arima_pred(y_train,y_test,order=[2,1,1]): | |||
| train = y_train | |||
| preds = [] | |||
| for test in range(len(y_test)): | |||
| model = ARIMA(train, order=(2,1,1)) | |||
| model = ARIMA(train, order=(order[0],order[1],order[2])) | |||
| model = model.fit() | |||
| output = model.forecast() | |||
| preds.append(output[0]) | |||
| train.append(y_test[test]) | |||
| return((np.square(preds - test)).mean()) | |||
| return((np.square(np.array(preds) - np.array(y_test))).mean(),preds) | |||
| activations = [tf.keras.activations.relu,swish,sinus_cosinus,sinus,snake] | |||
| #activations = [snake] | |||
| #activations = [tf.keras.activations.relu,swish,sinus_cosinus,sinus,snake] | |||
| activations = [snake] | |||
| models = [] | |||
| errors_train,errors_test = [],[] | |||
| mean_y_train,mean_y_test,std_y_test=[],[],[] | |||
| @@ -51,7 +51,7 @@ print("----") | |||
| print(y_test) | |||
| x_test=x_test / maximum | |||
| #print(arima_pred(list(x_train),list(y_test))) | |||
| print(arima_pred(list(y_train),list(y_test))) | |||
| for activation in activations : | |||
| @@ -71,7 +71,7 @@ for activation in activations : | |||
| model.compile(optimizer=opt, loss='mse') | |||
| model.build() | |||
| model.summary() | |||
| model.fit(x_train,y_train, batch_size=1, epochs=2) | |||
| model.fit(x_train,y_train, batch_size=1, epochs=1) | |||
| y_pred_test = model.predict(x_test) | |||
| y_pred_train = model.predict(x_train) | |||
| @@ -91,9 +91,9 @@ for activation in activations : | |||
| x = np.arange(9000) | |||
| x = x / maximum | |||
| future_preds = model.predict(x) ## Calculated with a website the number of working days between 01-06-2020 and 01-01-2024 | |||
| x_n = x / maximum | |||
| future_preds = model.predict(x_n) ## Calculated with a website the number of working days between 01-06-2020 and 01-01-2024 | |||
| def plot_total(x_train,y_train,y_pred_train,x_test,y_test,y_pred_test): | |||
| x = np.concatenate((x_train,x_test)) | |||
| @@ -116,7 +116,7 @@ x_cut = np.arange(df_train.shape[0]+df_test.shape[0]) | |||
| plt.figure() | |||
| plt.plot(x_cut,y_true,label="True data") | |||
| plt.plot(x,future_preds,label="Predictions") | |||
| plt.xticks(range(0, 9000, 250), range(1995, 2030, 1)) | |||
| plt.xticks(range(0, 9000, 250), range(1995, 2031, 1)) | |||
| plt.xlabel("Années") | |||
| plt.ylabel("Index Willshire5000 normalisé") | |||
| plt.vlines([index,index+85],ymin=0,ymax=1,colors="r",label="Test Samples") | |||