Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. import numpy as np
  2. import tensorflow as tf
  3. import pandas as pd
  4. import matplotlib.pyplot as plt
  5. import wilshire
  6. import tensorflow_addons as tfa
  7. from statsmodels.tsa.arima.model import ARIMA
  8. def snake(x):
  9. return(x+(tf.math.sin(50*x)**2)/50)
  10. def sinus(x):
  11. return(tf.math.sin(x))
  12. def sinus_cosinus(x):
  13. return(tf.math.sin(x)+tf.math.cos(x))
  14. def swish(x):
  15. return(x*tf.math.sigmoid(x))
  16. def arima_pred(y_train,y_test,order=[2,1,1]):
  17. train = y_train
  18. preds = []
  19. for test in range(len(y_test)):
  20. model = ARIMA(train, order=(order[0],order[1],order[2]))
  21. model = model.fit()
  22. output = model.forecast()
  23. preds.append(output[0])
  24. train.append(y_test[test])
  25. return((np.square(np.array(preds) - np.array(y_test))).mean(),preds)
  26. #activations = [tf.keras.activations.relu,swish,sinus_cosinus,sinus,snake]
  27. activations = [snake]
  28. models = []
  29. errors_train,errors_test = [],[]
  30. mean_y_train,mean_y_test,std_y_test=[],[],[]
  31. df_train,df_test,index = wilshire.preprocess('WILL5000INDFC2.csv')
  32. x_train = np.arange(df_train.shape[0])
  33. maximum = np.max(x_train)
  34. x_train = x_train / maximum
  35. y_train=df_train["WILL5000INDFC"]
  36. y_train.to_numpy()
  37. x_test = np.arange(df_train.shape[0]+1,df_train.shape[0]+df_test.shape[0]+1)
  38. y_test = df_test["WILL5000INDFC"]
  39. y_test.to_numpy()
  40. print("----")
  41. print(y_test)
  42. x_test=x_test / maximum
  43. print(arima_pred(list(y_train),list(y_test)))
  44. for activation in activations :
  45. y_train_5=[]
  46. y_test_5=[]
  47. errors_train_5=[]
  48. errors_test_5=[]
  49. for k in range(1):
  50. model = tf.keras.Sequential()
  51. model.add(tf.keras.layers.Dense(1,input_shape=[1,],activation=activation))
  52. model.add(tf.keras.layers.Dense(64,activation=activation))
  53. model.add(tf.keras.layers.Dense(64,activation=activation))
  54. model.add(tf.keras.layers.Dense(1))
  55. opt = tf.keras.optimizers.SGD(learning_rate=0.01,momentum=0.9)
  56. model.compile(optimizer=opt, loss='mse')
  57. model.build()
  58. model.summary()
  59. model.fit(x_train,y_train, batch_size=1, epochs=1)
  60. y_pred_test = model.predict(x_test)
  61. y_pred_train = model.predict(x_train)
  62. y_train_5.append(y_pred_train)
  63. y_test_5.append(y_pred_test)
  64. errors_test_5.append(model.evaluate(x_test,y_test))
  65. errors_train_5.append(model.evaluate(x_train,y_train))
  66. mean_y_train.append(np.mean(y_train_5,axis=0))
  67. mean_y_test.append(np.mean(y_test_5,axis=0))
  68. std_y_test.append(np.std(y_test_5,axis=0))
  69. errors_train.append([np.mean(errors_train_5),np.std(errors_train_5)])
  70. errors_test.append([np.mean(errors_test_5),np.std(errors_test_5)])
  71. # y_preds_train.append(y_pred_train)
  72. # y_preds_test.append(y_pred_test)
  73. x = np.arange(9000)
  74. x_n = x / maximum
  75. future_preds = model.predict(x_n) ## Calculated with a website the number of working days between 01-06-2020 and 01-01-2024
  76. def plot_total(x_train,y_train,y_pred_train,x_test,y_test,y_pred_test):
  77. x = np.concatenate((x_train,x_test))
  78. y_true = np.concatenate((y_train,y_test))
  79. y_pred = np.concatenate((y_pred_train,y_pred_test))
  80. plt.figure()
  81. plt.plot(x,y_true,label="True data")
  82. plt.plot(x,y_pred,label="Predictions")
  83. plt.vlines([index,index+85])
  84. plt.legend()
  85. plt.show()
  86. #plot_total(x_train,y_train,y_pred_train,x_test,y_test,y_pred_test)
  87. print(errors_test)
  88. #x=np.arange(df_train.shape[0]+df_test.shape[0]+908)
  89. y_true = np.concatenate((y_train,y_test))
  90. x_cut = np.arange(df_train.shape[0]+df_test.shape[0])
  91. plt.figure()
  92. plt.plot(x_cut,y_true,label="True data")
  93. plt.plot(x,future_preds,label="Predictions")
  94. plt.xticks(range(0, 9000, 250), range(1995, 2031, 1))
  95. plt.xlabel("Années")
  96. plt.ylabel("Index Willshire5000 normalisé")
  97. plt.vlines([index,index+85],ymin=0,ymax=1,colors="r",label="Test Samples")
  98. plt.legend()
  99. plt.show()