| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- import numpy as np
- import tensorflow as tf
- import pandas as pd
- import matplotlib.pyplot as plt
- import wilshire
- import tensorflow_addons as tfa
- from statsmodels.tsa.arima.model import ARIMA
-
- def snake(x):
- return(x+(tf.math.sin(50*x)**2)/50)
- def sinus(x):
- return(tf.math.sin(x))
- def sinus_cosinus(x):
- return(tf.math.sin(x)+tf.math.cos(x))
- def swish(x):
- return(x*tf.math.sigmoid(x))
-
- def arima_pred(y_train,y_test,order=[2,1,1]):
- train = y_train
- preds = []
- for test in range(len(y_test)):
- model = ARIMA(train, order=(order[0],order[1],order[2]))
- model = model.fit()
- output = model.forecast()
- preds.append(output[0])
- train.append(y_test[test])
- return((np.square(np.array(preds) - np.array(y_test))).mean(),preds)
-
-
- #activations = [tf.keras.activations.relu,swish,sinus_cosinus,sinus,snake]
- activations = [snake]
- models = []
- errors_train,errors_test = [],[]
- mean_y_train,mean_y_test,std_y_test=[],[],[]
-
- df_train,df_test,index = wilshire.preprocess('WILL5000INDFC2.csv')
- x_train = np.arange(df_train.shape[0])
-
-
- maximum = np.max(x_train)
- x_train = x_train / maximum
-
-
- y_train=df_train["WILL5000INDFC"]
- y_train.to_numpy()
-
- x_test = np.arange(df_train.shape[0]+1,df_train.shape[0]+df_test.shape[0]+1)
- y_test = df_test["WILL5000INDFC"]
- y_test.to_numpy()
- print("----")
- print(y_test)
- x_test=x_test / maximum
-
- print(arima_pred(list(y_train),list(y_test)))
-
-
- for activation in activations :
- y_train_5=[]
- y_test_5=[]
- errors_train_5=[]
- errors_test_5=[]
- for k in range(1):
-
- model = tf.keras.Sequential()
-
- model.add(tf.keras.layers.Dense(1,input_shape=[1,],activation=activation))
- model.add(tf.keras.layers.Dense(64,activation=activation))
- model.add(tf.keras.layers.Dense(64,activation=activation))
- model.add(tf.keras.layers.Dense(1))
- opt = tf.keras.optimizers.SGD(learning_rate=0.01,momentum=0.9)
- model.compile(optimizer=opt, loss='mse')
- model.build()
- model.summary()
- model.fit(x_train,y_train, batch_size=1, epochs=1)
-
- y_pred_test = model.predict(x_test)
- y_pred_train = model.predict(x_train)
- y_train_5.append(y_pred_train)
- y_test_5.append(y_pred_test)
- errors_test_5.append(model.evaluate(x_test,y_test))
- errors_train_5.append(model.evaluate(x_train,y_train))
-
-
- mean_y_train.append(np.mean(y_train_5,axis=0))
- mean_y_test.append(np.mean(y_test_5,axis=0))
- std_y_test.append(np.std(y_test_5,axis=0))
- errors_train.append([np.mean(errors_train_5),np.std(errors_train_5)])
- errors_test.append([np.mean(errors_test_5),np.std(errors_test_5)])
- # y_preds_train.append(y_pred_train)
- # y_preds_test.append(y_pred_test)
-
-
- x = np.arange(9000)
- x_n = x / maximum
- future_preds = model.predict(x_n) ## Calculated with a website the number of working days between 01-06-2020 and 01-01-2024
-
-
- def plot_total(x_train,y_train,y_pred_train,x_test,y_test,y_pred_test):
- x = np.concatenate((x_train,x_test))
- y_true = np.concatenate((y_train,y_test))
- y_pred = np.concatenate((y_pred_train,y_pred_test))
- plt.figure()
- plt.plot(x,y_true,label="True data")
- plt.plot(x,y_pred,label="Predictions")
- plt.vlines([index,index+85])
- plt.legend()
- plt.show()
-
- #plot_total(x_train,y_train,y_pred_train,x_test,y_test,y_pred_test)
-
- print(errors_test)
-
- #x=np.arange(df_train.shape[0]+df_test.shape[0]+908)
- y_true = np.concatenate((y_train,y_test))
- x_cut = np.arange(df_train.shape[0]+df_test.shape[0])
- plt.figure()
- plt.plot(x_cut,y_true,label="True data")
- plt.plot(x,future_preds,label="Predictions")
- plt.xticks(range(0, 9000, 250), range(1995, 2031, 1))
- plt.xlabel("Années")
- plt.ylabel("Index Willshire5000 normalisé")
- plt.vlines([index,index+85],ymin=0,ymax=1,colors="r",label="Test Samples")
- plt.legend()
- plt.show()
-
|