Parcourir la source

Debugged ARIMA and plot

Doriand
Doriand Petit il y a 4 ans
Parent
révision
c54823c679
1 fichiers modifiés avec 12 ajouts et 12 suppressions
  1. 12
    12
      code/wilshire_5000/nn.py

+ 12
- 12
code/wilshire_5000/nn.py Voir le fichier

@@ -15,20 +15,20 @@ def sinus_cosinus(x):
def swish(x):
return(x*tf.math.sigmoid(x))

def arima_pred(x_train,y_test):
train = x_train
def arima_pred(y_train,y_test,order=[2,1,1]):
train = y_train
preds = []
for test in range(len(y_test)):
model = ARIMA(train, order=(2,1,1))
model = ARIMA(train, order=(order[0],order[1],order[2]))
model = model.fit()
output = model.forecast()
preds.append(output[0])
train.append(y_test[test])
return((np.square(preds - test)).mean())
return((np.square(np.array(preds) - np.array(y_test))).mean(),preds)


activations = [tf.keras.activations.relu,swish,sinus_cosinus,sinus,snake]
#activations = [snake]
#activations = [tf.keras.activations.relu,swish,sinus_cosinus,sinus,snake]
activations = [snake]
models = []
errors_train,errors_test = [],[]
mean_y_train,mean_y_test,std_y_test=[],[],[]
@@ -51,7 +51,7 @@ print("----")
print(y_test)
x_test=x_test / maximum

#print(arima_pred(list(x_train),list(y_test)))
print(arima_pred(list(y_train),list(y_test)))


for activation in activations :
@@ -71,7 +71,7 @@ for activation in activations :
model.compile(optimizer=opt, loss='mse')
model.build()
model.summary()
model.fit(x_train,y_train, batch_size=1, epochs=2)
model.fit(x_train,y_train, batch_size=1, epochs=1)

y_pred_test = model.predict(x_test)
y_pred_train = model.predict(x_train)
@@ -91,9 +91,9 @@ for activation in activations :


x = np.arange(9000)
x = x / maximum
future_preds = model.predict(x) ## Calculated with a website the number of working days between 01-06-2020 and 01-01-2024
x_n = x / maximum
future_preds = model.predict(x_n) ## Calculated with a website the number of working days between 01-06-2020 and 01-01-2024

def plot_total(x_train,y_train,y_pred_train,x_test,y_test,y_pred_test):
x = np.concatenate((x_train,x_test))
@@ -116,7 +116,7 @@ x_cut = np.arange(df_train.shape[0]+df_test.shape[0])
plt.figure()
plt.plot(x_cut,y_true,label="True data")
plt.plot(x,future_preds,label="Predictions")
plt.xticks(range(0, 9000, 250), range(1995, 2030, 1))
plt.xticks(range(0, 9000, 250), range(1995, 2031, 1))
plt.xlabel("Années")
plt.ylabel("Index Willshire5000 normalisé")
plt.vlines([index,index+85],ymin=0,ymax=1,colors="r",label="Test Samples")

Chargement…
Annuler
Enregistrer