| model_sin.add(tf.keras.Input(shape=(1,))) | model_sin.add(tf.keras.Input(shape=(1,))) | ||||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| # model_sin.add(tf.keras.layers.Dense(8, activation=sin)) | |||||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||||
| model_sin.add(tf.keras.layers.Dense(512, activation=sin)) | |||||
| model_sin.add(tf.keras.layers.Dense(1)) | model_sin.add(tf.keras.layers.Dense(1)) | ||||
| opti=tf.keras.optimizers.Adam() | opti=tf.keras.optimizers.Adam() |
| import numpy as np | import numpy as np | ||||
| w=10 | w=10 | ||||
| n=20000 | |||||
| n=2000 | |||||
| #création de la base de donnéé | #création de la base de donnéé | ||||
| X,Y=creation_sin(-2.5,-1,n,w) | X,Y=creation_sin(-2.5,-1,n,w) | ||||
| X2,Y2=creation_sin(1,1.5,n,w) | |||||
| X2,Y2=creation_sin(3,3.5,n,w) | |||||
| X=np.concatenate([X,X2]) | X=np.concatenate([X,X2]) | ||||
| Y=np.concatenate([Y,Y2]) | Y=np.concatenate([Y,Y2]) | ||||
| model_sin=tf.keras.models.Sequential() | model_sin=tf.keras.models.Sequential() | ||||
| model_sin.add(tf.keras.Input(shape=(1,))) | model_sin.add(tf.keras.Input(shape=(1,))) |
| import numpy as np | import numpy as np | ||||
| w=10 | w=10 | ||||
| n=2000 | |||||
| n=20000 | |||||
| #création de la base de donnéé | #création de la base de donnéé | ||||
| X,Y=creation_sin(-1.5,-1,n,w) | |||||
| X2,Y2=creation_sin(1,1.5,n,w) | |||||
| X,Y=creation_x2(-2.5,-1,n) | |||||
| X2,Y2=creation_x2(1,1.5,n) | |||||
| X=np.concatenate([X,X2]) | X=np.concatenate([X,X2]) | ||||
| Y=np.concatenate([Y,Y2]) | Y=np.concatenate([Y,Y2]) | ||||
| n=10000 | n=10000 | ||||
| Xv,Yv=creation_sin(-3,3,n,w) | |||||
| Xv,Yv=creation_x2(-3,3,n) | |||||
| from Creation_donnee import * | from Creation_donnee import * | ||||
| import numpy as np | import numpy as np | ||||
| w=10 | w=10 | ||||
| n=2000 | |||||
| n=20000 | |||||
| #création de la base de donnéé | #création de la base de donnéé | ||||
| X,Y=creation_sin(-1.5,-1,n,w) | |||||
| X2,Y2=creation_sin(1,1.5,n,w) | |||||
| X,Y=creation_x2(-2.5,-1,n) | |||||
| X2,Y2=creation_x2(1,1.5,n) | |||||
| X=np.concatenate([X,X2]) | X=np.concatenate([X,X2]) | ||||
| Y=np.concatenate([Y,Y2]) | Y=np.concatenate([Y,Y2]) | ||||
| n=10000 | n=10000 | ||||
| Xv,Yv=creation_sin(-3,3,n,w) | |||||
| Xv,Yv=creation_x2(-3,3,n) | |||||
| model_ReLU.fit(X, Y, batch_size=16, epochs=50, shuffle='True',validation_data=(Xv, Yv)) | |||||
| model_ReLU.fit(X, Y, batch_size=16, epochs=5, shuffle='True',validation_data=(Xv, Yv)) | |||||
| import numpy as np | import numpy as np | ||||
| w=10 | w=10 | ||||
| n=20 | |||||
| n=20000 | |||||
| #création de la base de donnéé | #création de la base de donnéé | ||||
| X,Y=creation_sin(-1.5,-1,n,w) | |||||
| X2,Y2=creation_sin(1,1.5,n,w) | |||||
| X,Y=creation_x2(-2.5,-1,n) | |||||
| X2,Y2=creation_x2(1,1.5,n) | |||||
| X=np.concatenate([X,X2]) | X=np.concatenate([X,X2]) | ||||
| Y=np.concatenate([Y,Y2]) | Y=np.concatenate([Y,Y2]) | ||||
| n=10000 | n=10000 | ||||
| Xv,Yv=creation_sin(-3,3,n,w) | |||||
| Xv,Yv=creation_x2(-3,3,n) | |||||
| model_xsin.summary() | model_xsin.summary() | ||||
| model_xsin.fit(X, Y, batch_size=1, epochs=10, shuffle='True',validation_data=(Xv, Yv)) | |||||
| model_xsin.fit(X, Y, batch_size=16, epochs=100, shuffle='True',validation_data=(Xv, Yv)) | |||||