| @@ -34,13 +34,13 @@ model_sin=tf.keras.models.Sequential() | |||
| model_sin.add(tf.keras.Input(shape=(1,))) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(8, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(512, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(1)) | |||
| opti=tf.keras.optimizers.Adam() | |||
| @@ -17,10 +17,10 @@ from Creation_donnee import * | |||
| import numpy as np | |||
| w=10 | |||
| n=20000 | |||
| n=2000 | |||
| #création de la base de donnéé | |||
| X,Y=creation_sin(-2.5,-1,n,w) | |||
| X2,Y2=creation_sin(1,1.5,n,w) | |||
| X2,Y2=creation_sin(3,3.5,n,w) | |||
| X=np.concatenate([X,X2]) | |||
| Y=np.concatenate([Y,Y2]) | |||
| @@ -30,6 +30,7 @@ Xv,Yv=creation_sin(-3,3,n,w) | |||
| model_sin=tf.keras.models.Sequential() | |||
| model_sin.add(tf.keras.Input(shape=(1,))) | |||
| @@ -15,16 +15,15 @@ from Creation_donnee import * | |||
| import numpy as np | |||
| w=10 | |||
| n=2000 | |||
| n=20000 | |||
| #création de la base de donnéé | |||
| X,Y=creation_sin(-1.5,-1,n,w) | |||
| X2,Y2=creation_sin(1,1.5,n,w) | |||
| X,Y=creation_x2(-2.5,-1,n) | |||
| X2,Y2=creation_x2(1,1.5,n) | |||
| X=np.concatenate([X,X2]) | |||
| Y=np.concatenate([Y,Y2]) | |||
| n=10000 | |||
| Xv,Yv=creation_sin(-3,3,n,w) | |||
| Xv,Yv=creation_x2(-3,3,n) | |||
| @@ -14,15 +14,15 @@ from fonction_activation import * | |||
| from Creation_donnee import * | |||
| import numpy as np | |||
| w=10 | |||
| n=2000 | |||
| n=20000 | |||
| #création de la base de donnéé | |||
| X,Y=creation_sin(-1.5,-1,n,w) | |||
| X2,Y2=creation_sin(1,1.5,n,w) | |||
| X,Y=creation_x2(-2.5,-1,n) | |||
| X2,Y2=creation_x2(1,1.5,n) | |||
| X=np.concatenate([X,X2]) | |||
| Y=np.concatenate([Y,Y2]) | |||
| n=10000 | |||
| Xv,Yv=creation_sin(-3,3,n,w) | |||
| Xv,Yv=creation_x2(-3,3,n) | |||
| @@ -46,7 +46,7 @@ model_ReLU.summary() | |||
| model_ReLU.fit(X, Y, batch_size=16, epochs=50, shuffle='True',validation_data=(Xv, Yv)) | |||
| model_ReLU.fit(X, Y, batch_size=16, epochs=5, shuffle='True',validation_data=(Xv, Yv)) | |||
| @@ -24,15 +24,15 @@ from Creation_donnee import * | |||
| import numpy as np | |||
| w=10 | |||
| n=20 | |||
| n=20000 | |||
| #création de la base de donnéé | |||
| X,Y=creation_sin(-1.5,-1,n,w) | |||
| X2,Y2=creation_sin(1,1.5,n,w) | |||
| X,Y=creation_x2(-2.5,-1,n) | |||
| X2,Y2=creation_x2(1,1.5,n) | |||
| X=np.concatenate([X,X2]) | |||
| Y=np.concatenate([Y,Y2]) | |||
| n=10000 | |||
| Xv,Yv=creation_sin(-3,3,n,w) | |||
| Xv,Yv=creation_x2(-3,3,n) | |||
| @@ -55,7 +55,7 @@ model_xsin.compile(opti, loss='mse', metrics=['accuracy']) | |||
| model_xsin.summary() | |||
| model_xsin.fit(X, Y, batch_size=1, epochs=10, shuffle='True',validation_data=(Xv, Yv)) | |||
| model_xsin.fit(X, Y, batch_size=16, epochs=100, shuffle='True',validation_data=(Xv, Yv)) | |||