Kaynağa Gözat

tweek some parameters

Emilien
emilien 4 yıl önce
ebeveyn
işleme
805c57599c
2 değiştirilmiş dosya ile 15 ekleme ve 9 silme
  1. 2
    2
      code/resnet18/resnet18.py
  2. 13
    7
      code/resnet18/resnet18_snake.py

+ 2
- 2
code/resnet18/resnet18.py Dosyayı Görüntüle

self.res_4_2 = ResnetBlock(512) self.res_4_2 = ResnetBlock(512)
self.avg_pool = GlobalAveragePooling2D() self.avg_pool = GlobalAveragePooling2D()
self.flat = Flatten() self.flat = Flatten()
self.fc = Dense(num_classes, activation="softmax")
self.fc = Dense(num_classes, activation="sigmoid")


def call(self, inputs): def call(self, inputs):
out = self.conv_1(inputs) out = self.conv_1(inputs)
out = self.init_bn(out) out = self.init_bn(out)
out = x + tf.sin(x)**2 #tf.nn.relu(out)
out += tf.sin(out)**2 #tf.nn.relu(out)
out = self.pool_2(out) out = self.pool_2(out)
for res_block in [self.res_1_1, self.res_1_2, self.res_2_1, self.res_2_2, self.res_3_1, self.res_3_2, self.res_4_1, self.res_4_2]: for res_block in [self.res_1_1, self.res_1_2, self.res_2_1, self.res_2_2, self.res_3_1, self.res_3_2, self.res_4_1, self.res_4_2]:
out = res_block(out) out = res_block(out)

+ 13
- 7
code/resnet18/resnet18_snake.py Dosyayı Görüntüle

# Réseau inspiré de http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf # Réseau inspiré de http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf




from keras.callbacks import History

from tensorflow.python.ops.gen_array_ops import tensor_scatter_min_eager_fallback
from resnet18 import ResNet18 from resnet18 import ResNet18
import tensorflow as tf import tensorflow as tf
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
# Pour les utilisateurs de MacOS (pour utiliser plt & keras en même temps)
import os
#os.environ['KMP_DUPLICATE_LIB_OK']='True'




def displayConvFilers(model, layer_name, num_filter=4, filter_size=(3,3), num_channel=0, fig_size=(2,2)): def displayConvFilers(model, layer_name, num_filter=4, filter_size=(3,3), num_channel=0, fig_size=(2,2)):
resnet18 = tf.keras.datasets.cifar10 resnet18 = tf.keras.datasets.cifar10
(train_images, train_labels), (test_images, test_labels) = resnet18.load_data() (train_images, train_labels), (test_images, test_labels) = resnet18.load_data()



from sklearn.model_selection import train_test_split
train_images, val_images, train_labels, val_labels = train_test_split(train_images,train_labels, test_size = 0.2,shuffle = True)



'''
val_images = train_images[40000:] val_images = train_images[40000:]
val_labels = train_labels[40000:] val_labels = train_labels[40000:]


train_images = train_images[:40000] train_images = train_images[:40000]
train_labels = train_labels[:40000] train_labels = train_labels[:40000]
'''


train_images = train_images / 255.0 train_images = train_images / 255.0
val_images = val_images /255.0 val_images = val_images /255.0
test_images = test_images / 255.0 test_images = test_images / 255.0


# POUR LES CNN : On rajoute une dimension pour spécifier qu'il s'agit d'imgages en NdG # POUR LES CNN : On rajoute une dimension pour spécifier qu'il s'agit d'imgages en NdG
train_images = train_images.reshape(40000,32,32,3)
val_images = val_images.reshape(10000,32,32,3)
test_images = test_images.reshape(10000,32,32,3)
train_images = train_images.reshape(max(np.shape(train_images)),32,32,3)
val_images = val_images.reshape(max(np.shape(val_images)),32,32,3)
test_images = test_images.reshape(max(np.shape(test_images)),32,32,3)




# One hot encoding # One hot encoding

Loading…
İptal
Kaydet