Parcourir la source

tweek some parameters

Emilien
emilien il y a 4 ans
Parent
révision
805c57599c
2 fichiers modifiés avec 15 ajouts et 9 suppressions
  1. 2
    2
      code/resnet18/resnet18.py
  2. 13
    7
      code/resnet18/resnet18_snake.py

+ 2
- 2
code/resnet18/resnet18.py Voir le fichier

@@ -77,12 +77,12 @@ class ResNet18(Model):
self.res_4_2 = ResnetBlock(512)
self.avg_pool = GlobalAveragePooling2D()
self.flat = Flatten()
self.fc = Dense(num_classes, activation="softmax")
self.fc = Dense(num_classes, activation="sigmoid")

def call(self, inputs):
out = self.conv_1(inputs)
out = self.init_bn(out)
out = x + tf.sin(x)**2 #tf.nn.relu(out)
out += tf.sin(out)**2 #tf.nn.relu(out)
out = self.pool_2(out)
for res_block in [self.res_1_1, self.res_1_2, self.res_2_1, self.res_2_2, self.res_3_1, self.res_3_2, self.res_4_1, self.res_4_2]:
out = res_block(out)

+ 13
- 7
code/resnet18/resnet18_snake.py Voir le fichier

@@ -1,14 +1,12 @@
# Réseau inspiré de http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf


from keras.callbacks import History

from tensorflow.python.ops.gen_array_ops import tensor_scatter_min_eager_fallback
from resnet18 import ResNet18
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# Pour les utilisateurs de MacOS (pour utiliser plt & keras en même temps)
import os
#os.environ['KMP_DUPLICATE_LIB_OK']='True'


def displayConvFilers(model, layer_name, num_filter=4, filter_size=(3,3), num_channel=0, fig_size=(2,2)):
@@ -36,20 +34,28 @@ def snake(x):
resnet18 = tf.keras.datasets.cifar10
(train_images, train_labels), (test_images, test_labels) = resnet18.load_data()


from sklearn.model_selection import train_test_split
train_images, val_images, train_labels, val_labels = train_test_split(train_images,train_labels, test_size = 0.2,shuffle = True)



'''
val_images = train_images[40000:]
val_labels = train_labels[40000:]

train_images = train_images[:40000]
train_labels = train_labels[:40000]
'''

train_images = train_images / 255.0
val_images = val_images /255.0
test_images = test_images / 255.0

# POUR LES CNN : On rajoute une dimension pour spécifier qu'il s'agit d'imgages en NdG
train_images = train_images.reshape(40000,32,32,3)
val_images = val_images.reshape(10000,32,32,3)
test_images = test_images.reshape(10000,32,32,3)
train_images = train_images.reshape(max(np.shape(train_images)),32,32,3)
val_images = val_images.reshape(max(np.shape(val_images)),32,32,3)
test_images = test_images.reshape(max(np.shape(test_images)),32,32,3)


# One hot encoding

Chargement…
Annuler
Enregistrer