| @@ -17,9 +17,9 @@ from Creation_donnee import * | |||
| import numpy as np | |||
| w=10 | |||
| n=20 | |||
| n=2000 | |||
| #création de la base de donnéé | |||
| X,Y=creation_sin(-1.5,-1,n,w) | |||
| X,Y=creation_sin(-2.5,-1,n,w) | |||
| X2,Y2=creation_sin(1,1.5,n,w) | |||
| X=np.concatenate([X,X2]) | |||
| Y=np.concatenate([Y,Y2]) | |||
| @@ -34,13 +34,13 @@ model_sin=tf.keras.models.Sequential() | |||
| model_sin.add(tf.keras.Input(shape=(1,))) | |||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(512, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(8, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(64, activation=sin)) | |||
| # model_sin.add(tf.keras.layers.Dense(8, activation=sin)) | |||
| model_sin.add(tf.keras.layers.Dense(1)) | |||
| opti=tf.keras.optimizers.Adam() | |||
| @@ -50,7 +50,7 @@ model_sin.compile(opti, loss='mse', metrics=['accuracy']) | |||
| model_sin.summary() | |||
| model_sin.fit(X, Y, batch_size=16, epochs=1000, shuffle='True',validation_data=(Xv, Yv)) | |||
| model_sin.fit(X, Y, batch_size=16, epochs=150, shuffle='True',validation_data=(Xv, Yv)) | |||
| @@ -19,7 +19,7 @@ import numpy as np | |||
| w=10 | |||
| n=20000 | |||
| #création de la base de donnéé | |||
| X,Y=creation_sin(-1.5,-1,n,w) | |||
| X,Y=creation_sin(-2.5,-1,n,w) | |||
| X2,Y2=creation_sin(1,1.5,n,w) | |||
| X=np.concatenate([X,X2]) | |||
| Y=np.concatenate([Y,Y2]) | |||
| @@ -50,7 +50,7 @@ model_sin.compile(opti, loss='mse', metrics=['accuracy']) | |||
| model_sin.summary() | |||
| model_sin.fit(X, Y, batch_size=16, epochs=10, shuffle='True',validation_data=(Xv, Yv)) | |||
| model_sin.fit(X, Y, batch_size=16, epochs=100, shuffle='True',validation_data=(Xv, Yv)) | |||
| @@ -64,8 +64,8 @@ Y_predis_validation_sin=model_sin.predict(Xv) | |||
| plt.figure() | |||
| plt.plot(X,Y,'x',label='donnée') | |||
| plt.plot(Xv,Yv,label="validation") | |||
| plt.plot(X,Y_predis_sin,'o',label='prediction sur les données avec sin ') | |||
| plt.plot(Xv,Y_predis_validation_sin,label='prediction sur la validation avec sin') | |||
| plt.plot(X,Y_predis_sin,'o',label='prediction sur les données avec snake') | |||
| plt.plot(Xv,Y_predis_validation_sin,label='prediction sur la validation avec snake') | |||
| plt.legend() | |||
| plt.show() | |||
| @@ -15,15 +15,15 @@ from Creation_donnee import * | |||
| import numpy as np | |||
| w=10 | |||
| n=20 | |||
| n=2000 | |||
| #création de la base de donnéé | |||
| X,Y=creation_x2(-1.5,-1,n) | |||
| X2,Y2=creation_x2(1,1.5,n) | |||
| X,Y=creation_sin(-1.5,-1,n,w) | |||
| X2,Y2=creation_sin(1,1.5,n,w) | |||
| X=np.concatenate([X,X2]) | |||
| Y=np.concatenate([Y,Y2]) | |||
| n=10000 | |||
| Xv,Yv=creation_x2(-3,3,n) | |||
| Xv,Yv=creation_sin(-3,3,n,w) | |||
| @@ -45,7 +45,7 @@ model_swish.compile(opti, loss='mse', metrics=['accuracy']) | |||
| model_swish.summary() | |||
| model_swish.fit(X, Y, batch_size=1, epochs=16, shuffle='True',validation_data=(Xv, Yv)) | |||
| model_swish.fit(X, Y, batch_size=16, epochs=50, shuffle='True',validation_data=(Xv, Yv)) | |||
| @@ -14,15 +14,15 @@ from fonction_activation import * | |||
| from Creation_donnee import * | |||
| import numpy as np | |||
| w=10 | |||
| n=20 | |||
| n=2000 | |||
| #création de la base de donnéé | |||
| X,Y=creation_x2(-1.5,-1,n) | |||
| X2,Y2=creation_x2(1,1.5,n) | |||
| X,Y=creation_sin(-1.5,-1,n,w) | |||
| X2,Y2=creation_sin(1,1.5,n,w) | |||
| X=np.concatenate([X,X2]) | |||
| Y=np.concatenate([Y,Y2]) | |||
| n=10000 | |||
| Xv,Yv=creation_x2(-3,3,n) | |||
| Xv,Yv=creation_sin(-3,3,n,w) | |||