|
|
|
@@ -42,7 +42,7 @@ class ResnetBlock(Model): |
|
|
|
|
|
|
|
x = self.conv_1(inputs) |
|
|
|
x = self.bn_1(x) |
|
|
|
x = tf.nn.relu(x) |
|
|
|
x = x + tf.sin(x)**2 #tf.nn.relu(x) |
|
|
|
x = self.conv_2(x) |
|
|
|
x = self.bn_2(x) |
|
|
|
|
|
|
|
@@ -52,7 +52,7 @@ class ResnetBlock(Model): |
|
|
|
|
|
|
|
# if not perform down sample, then add a shortcut directly |
|
|
|
x = self.merge([x, res]) |
|
|
|
out = tf.nn.relu(x) |
|
|
|
out = x + tf.sin(x)**2 #tf.nn.relu(x) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
@@ -82,7 +82,7 @@ class ResNet18(Model): |
|
|
|
def call(self, inputs): |
|
|
|
out = self.conv_1(inputs) |
|
|
|
out = self.init_bn(out) |
|
|
|
out = tf.nn.relu(out) |
|
|
|
out = x + tf.sin(x)**2 #tf.nn.relu(out) |
|
|
|
out = self.pool_2(out) |
|
|
|
for res_block in [self.res_1_1, self.res_1_2, self.res_2_1, self.res_2_2, self.res_3_1, self.res_3_2, self.res_4_1, self.res_4_2]: |
|
|
|
out = res_block(out) |