Browse Source

add sanke function to resnet

Emilien
emilien 4 years ago
parent
commit
39e21ae2ae
2 changed files with 4 additions and 4 deletions
  1. 3
    3
      code/resnet18/resnet18.py
  2. 1
    1
      code/resnet18/resnet18_snake.py

+ 3
- 3
code/resnet18/resnet18.py View File

@@ -42,7 +42,7 @@ class ResnetBlock(Model):

x = self.conv_1(inputs)
x = self.bn_1(x)
x = tf.nn.relu(x)
x = x + tf.sin(x)**2 #tf.nn.relu(x)
x = self.conv_2(x)
x = self.bn_2(x)

@@ -52,7 +52,7 @@ class ResnetBlock(Model):

# if not perform down sample, then add a shortcut directly
x = self.merge([x, res])
out = tf.nn.relu(x)
out = x + tf.sin(x)**2 #tf.nn.relu(x)
return out


@@ -82,7 +82,7 @@ class ResNet18(Model):
def call(self, inputs):
out = self.conv_1(inputs)
out = self.init_bn(out)
out = tf.nn.relu(out)
out = x + tf.sin(x)**2 #tf.nn.relu(out)
out = self.pool_2(out)
for res_block in [self.res_1_1, self.res_1_2, self.res_2_1, self.res_2_2, self.res_3_1, self.res_3_2, self.res_4_1, self.res_4_2]:
out = res_block(out)

+ 1
- 1
code/resnet18/resnet18_snake.py View File

@@ -61,9 +61,9 @@ filter_size_conv1 = (3,3)

model = ResNet18(10)
model.build(input_shape = (None,32,32,3))
filter_size_conv1 = (5,5)

'''
filter_size_conv1 = (5,5)
## Définition de l'architecture du modèle
model = tf.keras.models.Sequential()
# Expliquez à quoi correspondent les valeurs numériques qui définissent les couches du réseau

Loading…
Cancel
Save