您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. import numpy as np
  2. import tensorflow as tf
  3. import pandas as pd
  4. import matplotlib.pyplot as plt
  5. import wilshire
  6. import tensorflow_addons as tfa
  7. from statsmodels.tsa.arima.model import ARIMA
  8. def snake(x):
  9. return(x+(tf.math.sin(20*x)**2)/20)
  10. def sinus(x):
  11. return(tf.math.sin(x))
  12. def sinus_cosinus(x):
  13. return(tf.math.sin(x)+tf.math.cos(x))
  14. def swish(x):
  15. return(x*tf.math.sigmoid(x))
  16. #activations = [tf.keras.activations.relu,swish,sinus_cosinus,sinus,snake]
  17. activations = [snake]
  18. def prepare_data(filename="WILL5000INDFC.csv"):
  19. df_train,df_test,index = wilshire.preprocess(filename)
  20. x_train = np.arange(df_train.shape[0])
  21. maximum = np.max(x_train)
  22. x_train = x_train / maximum
  23. y_train=df_train["WILL5000INDFC"]
  24. y_train.to_numpy()
  25. x_test = np.arange(df_train.shape[0]+1,df_train.shape[0]+df_test.shape[0]+1)
  26. y_test = df_test["WILL5000INDFC"]
  27. y_test.to_numpy()
  28. x_test=x_test / maximum
  29. return x_train,x_test,y_train,y_test,maximum,index
  30. def arima_pred(y_train,y_test,orders=[[2,1,1],[2,2,1],[3,1,1],[2,1,2]],n=5):
  31. mse=[]
  32. for order in orders :
  33. mean_err= []
  34. for k in range(n):
  35. train = y_train
  36. preds = []
  37. for test in range(len(y_test)):
  38. model = ARIMA(train, order=(order[0],order[1],order[2]))
  39. model = model.fit()
  40. output = model.forecast()
  41. #print(output)
  42. preds.append(output)
  43. #train.append(y_test[te
  44. mean_err.append((np.square(np.array(preds) - np.array(y_test))).mean())
  45. mse.append([np.array(mean_err).mean(),np.array(mean_err).std()])
  46. return(mse)
  47. def create_model(activation):
  48. model = tf.keras.Sequential()
  49. model.add(tf.keras.layers.Dense(1,input_shape=[1,],activation=activation))
  50. model.add(tf.keras.layers.Dense(64,activation=activation))
  51. model.add(tf.keras.layers.Dense(64,activation=activation))
  52. model.add(tf.keras.layers.Dense(1))
  53. opt = tf.keras.optimizers.SGD(learning_rate=0.01,momentum=0.8)
  54. model.compile(optimizer=opt, loss='mse')
  55. model.build()
  56. model.summary()
  57. return model
  58. def training_testing(n=5,activations = [tf.keras.activations.relu,swish,sinus_cosinus,sinus,snake]):
  59. x_train,x_test,y_train,y_test,maximum,index = prepare_data(filename="WILL5000INDFC2.csv")
  60. models = []
  61. errors_train,errors_test = [],[]
  62. mean_y_train,mean_y_test,std_y_test=[],[],[]
  63. for activation in activations :
  64. y_train_5=[]
  65. y_test_5=[]
  66. errors_train_5=[]
  67. errors_test_5=[]
  68. for k in range(n):
  69. model = create_model(activation)
  70. model.fit(x_train,y_train, batch_size=1, epochs=50)
  71. y_pred_test = model.predict(x_test)
  72. y_pred_train = model.predict(x_train)
  73. y_train_5.append(y_pred_train)
  74. y_test_5.append(y_pred_test)
  75. errors_test_5.append(model.evaluate(x_test,y_test))
  76. errors_train_5.append(model.evaluate(x_train,y_train))
  77. models.append(model)
  78. mean_y_train.append(np.mean(y_train_5,axis=0))
  79. mean_y_test.append(np.mean(y_test_5,axis=0))
  80. std_y_test.append(np.std(y_test_5,axis=0))
  81. errors_train.append([np.mean(errors_train_5),np.std(errors_train_5)])
  82. errors_test.append([np.mean(errors_test_5),np.std(errors_test_5)])
  83. # y_preds_train.append(y_pred_train)
  84. # y_preds_test.append(y_pred_test)
  85. return models,errors_train,errors_test
  86. def final_plot(models,errors_test,arima_err,activations=["ReLU","Swish","Sinus Cosinus","Sinus","Snake"]):
  87. x_train,x_test,y_train,y_test,maximum,index = prepare_data(filename="WILL5000INDFC2.csv")
  88. x = np.arange(9000)
  89. x_n = x / maximum
  90. future_preds = models[-1].predict(x_n) ## Calculated with a website the number of working days between 01-06-2020 and 01-01-2024
  91. #x=np.arange(df_train.shape[0]+df_test.shape[0]+908)
  92. y_true = np.concatenate((y_train,y_test))
  93. x_cut = np.arange(x_train.shape[0]+x_test.shape[0])
  94. print("----- ARIMA Test MSE -----")
  95. orders_ARIMA = ["[2,1,1]","[2,2,1]","[3,1,1]","[2,1,2]"]
  96. # for k in range(len(orders_ARIMA)):
  97. # print("ARIMA"+orders_ARIMA[k]+" : "+str(arima_err[k]))
  98. print("----- DNN Test MSE -----")
  99. for k in range(len(activations)):
  100. print("DNN "+activations[k]+" : "+str(errors_test[k]))
  101. plt.figure()
  102. plt.plot(x_cut,y_true,label="True data")
  103. plt.plot(x,future_preds,label="Predictions")
  104. plt.xticks(range(0, 9000, 500), range(1995, 2031, 2))
  105. plt.xlabel("Années")
  106. plt.ylabel("Index Willshire5000 normalisé")
  107. plt.vlines([index,index+85],ymin=0,ymax=1,colors="r",label="Test Samples")
  108. plt.legend()
  109. plt.show()
  110. x_train,x_test,y_train,y_test,maximum,index = prepare_data()
  111. #mse = arima_pred(y_train,y_test)
  112. # mse=[]
  113. # # models,errors_train,errors_test = training_testing(n=1,activations=[snake])
  114. # # models[0].save("Snake20a")
  115. # models=[]
  116. # errors_test=[]
  117. # models.append(tf.keras.models.load_model("Snake30a"))
  118. # print(mse,errors_test)
  119. # final_plot(models,errors_test,mse,activations=[])
  120. def plot_all_a(a=["1","10","20","30","100"]):
  121. models=[]
  122. for param in a :
  123. models.append(tf.keras.models.load_model("Snake"+param+"a"))
  124. x_train,x_test,y_train,y_test,maximum,index = prepare_data(filename="WILL5000INDFC2.csv")
  125. x = np.arange(9000)
  126. x_n = x / maximum
  127. y_true = np.concatenate((y_train,y_test))
  128. x_cut = np.arange(x_train.shape[0]+x_test.shape[0])
  129. future_preds=[]
  130. for k in range(len(models)):
  131. future_preds.append(models[k].predict(x_n) )
  132. plt.figure()
  133. plt.plot(x_cut,y_true,label="True data")
  134. for k in range(len(models)):
  135. plt.plot(x,future_preds[k],label="a = "+a[k])
  136. plt.xticks(range(0, 9000, 500), range(1995, 2031, 2))
  137. plt.xlabel("Années")
  138. plt.ylabel("Index Willshire5000 normalisé")
  139. plt.legend()
  140. plt.show()
  141. # plot_all_a()