| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- # -*- coding: utf-8 -*-
- """
- Created on Wed Nov 10 10:30:04 2021
-
- @author: virgi
- """
- from Creation_donnee import *
- import numpy as np
- import math as ma
- import matplotlib.pyplot as plt
- import tensorflow as tf
- tmin=-20
- tmax=5
- n=100000
- X,Y=creation_sin(tmin,tmax,n,1,a=1,c=0)
- tmin=5
- tmax=20
- Xv,Yv=creation_sin(tmin,tmax,n,1,a=1,c=0)
-
- model = tf.keras.models.Sequential()
-
- model.add(tf.keras.Input(shape=(1,)))
-
- model.add(tf.keras.layers.Dense(64, activation='relu'))
- model.add(tf.keras.layers.Dense(64, activation='relu'))
- model.add(tf.keras.layers.Dense(64, activation='relu'))
- model.add(tf.keras.layers.Dense(64, activation='relu'))
- model.add(tf.keras.layers.Dense(128, activation='relu'))
-
-
- model.add(tf.keras.layers.Dense(1))
-
-
- # Choix de la méthode d'optimisation
- opti=tf.keras.optimizers.Adam()
- # Compilation du graphe et choix de la fonction de coût
- model.compile(opti, loss='mse', metrics=['accuracy'])
-
-
- model.summary()
-
-
- model.fit(X, Y, batch_size=32, epochs=2, shuffle='True',validation_data=(Xv, Yv))
-
- Y_predis=model.predict(X)
- Y_predis_validation=model.predict(Xv)
-
- plt.figure()
- plt.plot(X,Y,label='donnée')
- plt.plot(Xv,Yv,label="validation")
- plt.plot(X,Y_predis,label='prediction sur les donné')
- plt.plot(Xv,Y_predis_validation,label='prediction sur la validation')
- plt.legend()
- plt.show()
|