Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
Doriand Petit a2084c0a26 moved readme pirms 4 gadiem
..
Snake1a Added several models and cleaned figures pirms 4 gadiem
Snake10a Added several models and cleaned figures pirms 4 gadiem
Snake20a Added several models and cleaned figures pirms 4 gadiem
Snake30a Added several models and cleaned figures pirms 4 gadiem
Snake50a Added several models and cleaned figures pirms 4 gadiem
Snake100a Added several models and cleaned figures pirms 4 gadiem
30aplot1.png Added several models and cleaned figures pirms 4 gadiem
30aplot2.png Added several models and cleaned figures pirms 4 gadiem
README.md moved readme pirms 4 gadiem
WILL5000INDFC.csv Added several models and cleaned figures pirms 4 gadiem
a_plot.png Added several models and cleaned figures pirms 4 gadiem
nn.py Added instals commands on readme pirms 4 gadiem
notebook_wilshire.ipynb Added instals commands on readme pirms 4 gadiem
wilshire.py Added notebook pirms 4 gadiem

README.md

wilshire_5000

Prédiction des données financières à partir de l’index Wilshire5000

Classical Installations Required : numpy, pandas, tensorflow and matplotlib (and warnings)

Other Installation : statsmodels for ARIMA predictions (pip install statsmodels)

Le notebook est une démo du fonctionnement des fonctions. Le fichier wilshire.py s’occupe du pré-processing des données et parsing. Le fichier nn.py s’occupe de la partie DeepLearning, ainsi que les prédictions ARIMA et finalement plot les fonctions.

Données

Données