| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- # -*- coding: utf-8 -*-
- """
- Created on Wed Nov 24 16:58:44 2021
-
- @author: virgi
- """
-
-
-
-
-
- import tensorflow as tf
- import matplotlib.pyplot as plt
- from fonction_activation import *
-
- from Creation_donnee import *
- import numpy as np
-
- w=10
- n=2000
- #création de la base de donnéé
- X,Y=creation_sin(-2.5,-1,n,w)
- X2,Y2=creation_sin(3,3.5,n,w)
- X=np.concatenate([X,X2])
- Y=np.concatenate([Y,Y2])
-
- n=10000
- Xv,Yv=creation_sin(-3,3,n,w)
-
-
-
-
-
- model_sin=tf.keras.models.Sequential()
-
- model_sin.add(tf.keras.Input(shape=(1,)))
-
- # model_sin.add(tf.keras.layers.Dense(64, activation=sin))
- # model_sin.add(tf.keras.layers.Dense(64, activation=sin))
- # model_sin.add(tf.keras.layers.Dense(64, activation=sin))
- # model_sin.add(tf.keras.layers.Dense(64, activation=sin))
- # model_sin.add(tf.keras.layers.Dense(512, activation=sin))
- # model_sin.add(tf.keras.layers.Dense(64, activation=sin))
- model_sin.add(tf.keras.layers.Dense(512, activation=snake))
- model_sin.add(tf.keras.layers.Dense(1))
-
- opti=tf.keras.optimizers.Adam()
-
- model_sin.compile(opti, loss='mse', metrics=['accuracy'])
-
-
- model_sin.summary()
-
- model_sin.fit(X, Y, batch_size=16, epochs=100, shuffle='True',validation_data=(Xv, Yv))
-
-
-
-
- Y_predis_sin=model_sin.predict(X)
- Y_predis_validation_sin=model_sin.predict(Xv)
-
-
-
-
- plt.figure()
- plt.plot(X,Y,'x',label='donnée')
- plt.plot(Xv,Yv,label="validation")
- plt.plot(X,Y_predis_sin,'o',label='prediction sur les données avec snake')
- plt.plot(Xv,Y_predis_validation_sin,label='prediction sur la validation avec snake')
- plt.legend()
- plt.show()
-
|