Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

resnet18.py 3.3KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. from keras.callbacks import EarlyStopping
  2. from keras.layers import Dense, Conv2D, MaxPool2D, Flatten, GlobalAveragePooling2D, BatchNormalization, Layer, Add
  3. from keras.models import Sequential
  4. from keras.models import Model
  5. import tensorflow as tf
  6. class ResnetBlock(Model):
  7. """
  8. A standard resnet block.
  9. """
  10. def __init__(self, channels: int, down_sample=False):
  11. """
  12. channels: same as number of convolution kernels
  13. """
  14. super().__init__()
  15. self.__channels = channels
  16. self.__down_sample = down_sample
  17. self.__strides = [2, 1] if down_sample else [1, 1]
  18. KERNEL_SIZE = (3, 3)
  19. INIT_SCHEME = "he_normal"
  20. self.conv_1 = Conv2D(self.__channels, strides=self.__strides[0],
  21. kernel_size=KERNEL_SIZE, padding="same", kernel_initializer=INIT_SCHEME)
  22. self.bn_1 = BatchNormalization()
  23. self.conv_2 = Conv2D(self.__channels, strides=self.__strides[1],
  24. kernel_size=KERNEL_SIZE, padding="same", kernel_initializer=INIT_SCHEME)
  25. self.bn_2 = BatchNormalization()
  26. self.merge = Add()
  27. if self.__down_sample:
  28. # perform down sampling using stride of 2, according to [1].
  29. self.res_conv = Conv2D(
  30. self.__channels, strides=2, kernel_size=(1, 1), kernel_initializer=INIT_SCHEME, padding="same")
  31. self.res_bn = BatchNormalization()
  32. def call(self, inputs):
  33. res = inputs
  34. x = self.conv_1(inputs)
  35. x = self.bn_1(x)
  36. x = x + tf.sin(x)**2 #tf.nn.relu(x)
  37. x = self.conv_2(x)
  38. x = self.bn_2(x)
  39. if self.__down_sample:
  40. res = self.res_conv(res)
  41. res = self.res_bn(res)
  42. # if not perform down sample, then add a shortcut directly
  43. x = self.merge([x, res])
  44. out = x + tf.sin(x)**2 #tf.nn.relu(x)
  45. return out
  46. class ResNet18(Model):
  47. def __init__(self, num_classes, **kwargs):
  48. """
  49. num_classes: number of classes in specific classification task.
  50. """
  51. super().__init__(**kwargs)
  52. self.conv_1 = Conv2D(64, (7, 7), strides=2,
  53. padding="same", kernel_initializer="he_normal")
  54. self.init_bn = BatchNormalization()
  55. self.pool_2 = MaxPool2D(pool_size=(2, 2), strides=2, padding="same")
  56. self.res_1_1 = ResnetBlock(64)
  57. self.res_1_2 = ResnetBlock(64)
  58. self.res_2_1 = ResnetBlock(128, down_sample=True)
  59. self.res_2_2 = ResnetBlock(128)
  60. self.res_3_1 = ResnetBlock(256, down_sample=True)
  61. self.res_3_2 = ResnetBlock(256)
  62. self.res_4_1 = ResnetBlock(512, down_sample=True)
  63. self.res_4_2 = ResnetBlock(512)
  64. self.avg_pool = GlobalAveragePooling2D()
  65. self.flat = Flatten()
  66. self.fc = Dense(num_classes, activation="sigmoid")
  67. def call(self, inputs):
  68. out = self.conv_1(inputs)
  69. out = self.init_bn(out)
  70. out += tf.sin(out)**2 #tf.nn.relu(out)
  71. out = self.pool_2(out)
  72. for res_block in [self.res_1_1, self.res_1_2, self.res_2_1, self.res_2_2, self.res_3_1, self.res_3_2, self.res_4_1, self.res_4_2]:
  73. out = res_block(out)
  74. out = self.avg_pool(out)
  75. out = self.flat(out)
  76. out = self.fc(out)
  77. return out