import tensorflow as tf from matplotlib import pyplot as plt import numpy as np from Model import MyModel LEN_TRAIN = 5000 LEN_SEQ = 100 PRED = 0.02 HIDDEN = 128 model = MyModel(HIDDEN) dataset = np.load('dataset.npy') datasetp = np.roll(dataset, 1) datasetp[0] = dataset[0] data = (dataset - datasetp)/datasetp data = data*2/(max(data) - min(data)) annee = np.array(list(range(len(data))))/365 annee = annee - annee[-1] start_pred = int(len(data)*(1-PRED)) print(len(data)) print(start_pred) plt.figure(1) plt.plot(annee[:start_pred],data[:start_pred], label="apprentissage") plt.plot(annee[start_pred:],data[start_pred:], label="validation") plt.legend() plt.show() X_train = [data[0:start_pred-1]] Y_train = [data[1:start_pred]] X_train = np.expand_dims(np.array(X_train),2) Y_train = np.expand_dims(np.array(Y_train),2) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['binary_crossentropy']) import os os.system("rm -rf log_dir") model.fit(x=X_train, y=Y_train, epochs=30) Pred = X_train.copy() while len(Pred[0]) < len(data) : print(len(data) - len(Pred[0])) Pred = np.concatenate((Pred, np.array([[model.predict(Pred)[0][-1]]])),1) Pred = Pred/2*(max(data) - min(data)) data_Pred = dataset.copy() Pred = np.squeeze(Pred) for i in range(start_pred,len(data_Pred)) : data_Pred[i] = data_Pred[i-1]*Pred[i] + data_Pred[i-1] plt.figure(2) plt.plot(annee[:start_pred],dataset[:start_pred], label="apprentissage") plt.plot(annee[start_pred:],dataset[start_pred:], label="validation") plt.plot(annee, data_Pred, label="prediction") plt.legend() fig, axs = plt.subplots(2) axs[0].plot(annee[:start_pred],dataset[:start_pred], label="apprentissage") axs[0].plot(annee[start_pred:],dataset[start_pred:], label="validation") axs[1].plot(annee, data_Pred, label="prediction") plt.legend() plt.show()