import numpy as np import tensorflow as tf import pandas as pd import matplotlib.pyplot as plt def parser(path): df = pd.read_csv(path,na_values='.') print(df.shape) df = df.interpolate() #df = df.dropna() print(df.shape) #df = df.drop(labels=np.arange(1825)) ### To obtain the same graph than in the article print(df.shape) return(df) def preprocess(path): df = parser(path) print(df) df_normalized = df[:] df_normalized["WILL5000INDFC"]=df_normalized["WILL5000INDFC"]/np.max(df_normalized["WILL5000INDFC"]) # df.plot() # plt.show() df_train = df_normalized[:6544] df_test = df_normalized[6545:6629] # df_train.plot() # df_test.plot() # plt.show() return(df_train,df_test)