# -*- coding: utf-8 -*- """ Created on Wed Nov 24 16:48:52 2021 @author: virgi """ import tensorflow as tf import matplotlib.pyplot as plt from fonction_activation import * from Creation_donnee import * import numpy as np n=20 #création de la base de donnéé X,Y=creation_sin(-15,-8,n,1,) X2,Y2=creation_sin(10,18,n,1,) X=np.concatenate([X,X2]) Y=np.concatenate([Y,Y2]) n=10000 Xv,Yv=creation_sin(-20,20,n,1) model_swish=tf.keras.models.Sequential() model_swish.add(tf.keras.Input(shape=(1,))) model_swish.add(tf.keras.layers.Dense(512, activation='swish')) model_swish.add(tf.keras.layers.Dense(1)) opti=tf.keras.optimizers.Adam() model_swish.compile(opti, loss='mse', metrics=['accuracy']) model_swish.summary() model_swish.fit(X, Y, batch_size=1, epochs=10, shuffle='True',validation_data=(Xv, Yv)) Y_predis_swish=model_swish.predict(X) Y_predis_validation_swish=model_swish.predict(Xv) plt.figure() plt.plot(X,Y,'x',label='donnée') plt.plot(Xv,Yv,label="validation") plt.plot(X,Y_predis_swish,'o',label='prediction sur les donné avec swish comme activation') plt.plot(Xv,Y_predis_validation_swish,label='prediction sur la validation avec swish comme activation') plt.legend() plt.show() """ Created on Wed Nov 24 16:53:37 2021 @author: virgi """