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Introduction
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Fonction d'activation snake

1
snake,(x) = x + = sin?(ax)

— a=1

Figure: Tracé des fonctions Snake
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Classical activation function
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Figure: Prediction d'un signal carré avec différentes fonctions b
d’'activations
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Figure: Prediction d'un signal sinus avec différentes fonctions Q
SO SORBONNE
d'activations

UNIVERSITE



Classical activation function
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Classical activation function
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Classical activation function
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Figure: Prédiction par des réseaux de neurones avec des fonctions
d'activations périodiques ou pseudo-périodique
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Figure: Exemple de la base de données ciphar-10 Q
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Ciphar-10
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Figure: Architecture du réseau de neurone convolutionnel ResNet-18
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(b) Prédiction de RelLu sur la base de données
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Figure: Comparaison de I'efficacité de Snake
par rapport a RelLu sur un tache de classification d'image
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Figure: Prédictions pour différentes valeurs de a
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Figure: Prédiction pour a = 30
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Figure: Prédiction par des réseaux utilisant des couches LSTM
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