# -*- coding: utf-8 -*- """ Created on Wed Nov 24 16:58:44 2021 @author: virgi """ import tensorflow as tf import matplotlib.pyplot as plt from fonction_activation import * from Creation_donnee import * import numpy as np w=10 n=2000 #création de la base de donnée X,Y=creation_sin(-2.5,-1,n,w) X2,Y2=creation_sin(1,1.5,n,w) X=np.concatenate([X,X2]) Y=np.concatenate([Y,Y2]) n=10000 Xv,Yv=creation_sin(-3,3,n,w) model_sin=tf.keras.models.Sequential() model_sin.add(tf.keras.Input(shape=(1,))) # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) # model_sin.add(tf.keras.layers.Dense(64, activation=sin)) model_sin.add(tf.keras.layers.Dense(512, activation=sin)) model_sin.add(tf.keras.layers.Dense(1)) opti=tf.keras.optimizers.Adam() model_sin.compile(opti, loss='mse', metrics=['accuracy']) model_sin.summary() model_sin.fit(X, Y, batch_size=16, epochs=150, shuffle='True',validation_data=(Xv, Yv)) Y_predis_sin=model_sin.predict(X) Y_predis_validation_sin=model_sin.predict(Xv) plt.figure() plt.plot(X,Y,'x',label='donnée') plt.plot(Xv,Yv,label="validation") plt.plot(X,Y_predis_sin,'o',label='prediction sur les données avec sin ') plt.plot(Xv,Y_predis_validation_sin,label='prediction sur la validation avec sin') plt.legend() plt.show()