|
|
|
@@ -3,18 +3,18 @@ from matplotlib import pyplot as plt |
|
|
|
import numpy as np |
|
|
|
from Model import MyModel |
|
|
|
|
|
|
|
LEN_TRAIN = 5000 |
|
|
|
LEN_SEQ = 100 |
|
|
|
PRED = 0.02 |
|
|
|
|
|
|
|
LEN_SEQ = 64 |
|
|
|
PRED = 0.05 |
|
|
|
HIDDEN = 128 |
|
|
|
|
|
|
|
model = MyModel(HIDDEN) |
|
|
|
|
|
|
|
dataset = np.load('dataset.npy') |
|
|
|
datasetp = np.roll(dataset, 1) |
|
|
|
datasetp[0] = dataset[0] |
|
|
|
data = (dataset - datasetp)/datasetp |
|
|
|
data = data*2/(max(data) - min(data)) |
|
|
|
scale = (np.max(dataset) - np.min(dataset)) |
|
|
|
data = dataset/scale |
|
|
|
shift = np.min(data) |
|
|
|
data = data - shift |
|
|
|
|
|
|
|
annee = np.array(list(range(len(data))))/365 |
|
|
|
annee = annee - annee[-1] |
|
|
|
@@ -27,11 +27,20 @@ plt.plot(annee[start_pred:],data[start_pred:], label="validation") |
|
|
|
plt.legend() |
|
|
|
plt.show() |
|
|
|
|
|
|
|
X_train = [data[0:start_pred-1]] |
|
|
|
Y_train = [data[1:start_pred]] |
|
|
|
X_train_tot = [data[0:start_pred-1]] |
|
|
|
Y_train_tot = [data[1:start_pred]] |
|
|
|
|
|
|
|
X_train_tot = np.expand_dims(np.array(X_train_tot),2) |
|
|
|
Y_train_tot = np.expand_dims(np.array(Y_train_tot),2) |
|
|
|
|
|
|
|
X_train = np.expand_dims(np.array(X_train),2) |
|
|
|
Y_train = np.expand_dims(np.array(Y_train),2) |
|
|
|
X_train = X_train_tot[:,:LEN_SEQ,:] |
|
|
|
Y_train = Y_train_tot[:,:LEN_SEQ,:] |
|
|
|
|
|
|
|
for i in range(len(X_train_tot[0]) - LEN_SEQ) : |
|
|
|
X_train = np.concatenate((X_train, X_train_tot[:,i:i+LEN_SEQ,:]),0) |
|
|
|
Y_train = np.concatenate((Y_train, Y_train_tot[:,i:i+LEN_SEQ,:]),0) |
|
|
|
print(X_train_tot.shape) |
|
|
|
print(X_train.shape) |
|
|
|
|
|
|
|
|
|
|
|
model.compile(optimizer='adam', |
|
|
|
@@ -40,17 +49,16 @@ model.compile(optimizer='adam', |
|
|
|
import os |
|
|
|
os.system("rm -rf log_dir") |
|
|
|
|
|
|
|
model.fit(x=X_train, y=Y_train, epochs=30) |
|
|
|
model.fit(x=X_train, y=Y_train, batch_size=16, epochs=5, shuffle=True) |
|
|
|
|
|
|
|
Pred = X_train.copy() |
|
|
|
Pred = X_train_tot.copy() |
|
|
|
while len(Pred[0]) < len(data) : |
|
|
|
print(len(data) - len(Pred[0])) |
|
|
|
Pred = np.concatenate((Pred, np.array([[model.predict(Pred)[0][-1]]])),1) |
|
|
|
Pred = Pred/2*(max(data) - min(data)) |
|
|
|
data_Pred = dataset.copy() |
|
|
|
Pred = np.squeeze(Pred) |
|
|
|
for i in range(start_pred,len(data_Pred)) : |
|
|
|
data_Pred[i] = data_Pred[i-1]*Pred[i] + data_Pred[i-1] |
|
|
|
Pred = Pred + shift |
|
|
|
Pred = Pred * scale |
|
|
|
|
|
|
|
data_Pred = np.squeeze(Pred) |
|
|
|
|
|
|
|
plt.figure(2) |
|
|
|
plt.plot(annee[:start_pred],dataset[:start_pred], label="apprentissage") |