Kaynağa Gözat

Merge remote-tracking branch 'origin/Virgile'

Emile2
Emile Siboulet 4 yıl önce
ebeveyn
işleme
3930e5e539
27 değiştirilmiş dosya ile 217 ekleme ve 88 silme
  1. 58
    0
      code/fonctions_activations_classiques/Creation_donnee.py
  2. 3
    3
      code/fonctions_activations_classiques/fonction_activation.py
  3. 19
    0
      code/fonctions_activations_classiques/notebook.py
  4. BIN
      code/fonctions_activations_classiques/prediction_sinus.png
  5. BIN
      code/fonctions_activations_classiques/prediction_sinus_ReLU.png
  6. BIN
      code/fonctions_activations_classiques/prediction_sinus_sin.png
  7. BIN
      code/fonctions_activations_classiques/prediction_sinus_snake.png
  8. BIN
      code/fonctions_activations_classiques/prediction_sinus_swish.png
  9. BIN
      code/fonctions_activations_classiques/prediction_sinus_tanh.png
  10. BIN
      code/fonctions_activations_classiques/prediction_sinus_x+sin.png
  11. BIN
      code/fonctions_activations_classiques/prediction_snake_8neuronne.png
  12. BIN
      code/fonctions_activations_classiques/prediction_x2_ReLU.png
  13. BIN
      code/fonctions_activations_classiques/prediction_x2_sin.png
  14. BIN
      code/fonctions_activations_classiques/prediction_x2_snake_v2.png
  15. BIN
      code/fonctions_activations_classiques/prediction_x2_swish.png
  16. BIN
      code/fonctions_activations_classiques/prediction_x2_tanh.png
  17. BIN
      code/fonctions_activations_classiques/prediction_x2_x+sin.png
  18. 16
    21
      code/fonctions_activations_classiques/sin.py
  19. BIN
      code/fonctions_activations_classiques/sinus_quasi_fonctionnelle.png
  20. 73
    0
      code/fonctions_activations_classiques/snake.py
  21. BIN
      code/fonctions_activations_classiques/snake_donnée_augenté.png
  22. BIN
      code/fonctions_activations_classiques/snake_quasi_fonctionnelle.png
  23. 11
    18
      code/fonctions_activations_classiques/snake_vs_ReLU.py
  24. 10
    13
      code/fonctions_activations_classiques/swish.py
  25. BIN
      code/fonctions_activations_classiques/tanh.png
  26. 16
    21
      code/fonctions_activations_classiques/tanh_vs_ReLU.py
  27. 11
    12
      code/fonctions_activations_classiques/x_sin.py

+ 58
- 0
code/fonctions_activations_classiques/Creation_donnee.py Dosyayı Görüntüle

import math as ma import math as ma
len_seq = 10 len_seq = 10
def creation_sin_RNN(len_seq,tmin,tmax,n,w,a=1,b=0): def creation_sin_RNN(len_seq,tmin,tmax,n,w,a=1,b=0):


Datax, Datay = [], [] Datax, Datay = [], []




def creation_sin(tmin,tmax,n,w,a=1,c=0): def creation_sin(tmin,tmax,n,w,a=1,c=0):
## [tmin,tmax] intervalle de création
## n nombre de poins
## w pulsation
## Lx= a*sin+c coordonné y des points
## t coordonné x des points
Lx=[] Lx=[]
t = np.linspace(tmin,tmax,n) t = np.linspace(tmin,tmax,n)
for i in t: for i in t:
return(t,Lx) return(t,Lx)


def creation_x_sin(tmin,tmax,n,w,a=1,b=0,c=0): def creation_x_sin(tmin,tmax,n,w,a=1,b=0,c=0):
## [tmin,tmax] intervalle de création
## n nombre de poins
## w pulsation
## Lx= a*x+b*sin(x)+c coordonné y des points
## t coordonné x des points
Lx=[] Lx=[]
t = np.linspace(tmin,tmax,n) t = np.linspace(tmin,tmax,n)
for i in t: for i in t:
return(t,Lx) return(t,Lx)


def creation_x_sin2(tmin,tmax,n,w,a=1,b=1,c=0): def creation_x_sin2(tmin,tmax,n,w,a=1,b=1,c=0):
## n nombre de poins
## w pulsation
## Lx= a*x+b*sin(x)²+c coordonné y des points
## t coordonné x des points
Lx=[] Lx=[]
t = np.linspace(tmin,tmax,n) t = np.linspace(tmin,tmax,n)
for i in t: for i in t:
Lx=np.array(Lx) Lx=np.array(Lx)
return(t,Lx) return(t,Lx)


def creation_x(tmin,tmax,n):
## n nombre de poins
## w pulsation
## Lx= x coordonné y des points
## t coordonné x des points
Lx=[]
t= np.linspace(tmin,tmax,n)
for i in t:
Lx.append(i)
return(t,np.array(Lx))


def creation_arctan(tmin,tmax,n):
## n nombre de poins
## w pulsation
## Lx= arxtan(x) coordonné y des points
## t coordonné x des points
Lx=[]
t= np.linspace(tmin,tmax,n)
for i in t:
Lx.append(np.arctan(i))
return(t,np.array(Lx))


def creation_x2(tmin,tmax,n):

## n nombre de poins
## w pulsation
## Lx= x² coordonné y des points
## t coordonné x des points

Lx=[]
t= np.linspace(tmin,tmax,n)
for i in t:
Lx.append(i**2)
return(t,np.array(Lx))

+ 3
- 3
code/fonctions_activations_classiques/fonction_activation.py Dosyayı Görüntüle







def snake(x, alpha=1.0):
def snake(x, alpha=5):
return (x + tf.sin(x)**2/alpha) return (x + tf.sin(x)**2/alpha)




def x_sin(x,alpha=1.0):
def x_sin(x,alpha=5):
return (x + tf.sin(x)/alpha) return (x + tf.sin(x)/alpha)


def sin(x,alpha=1.0):
def sin(x,alpha=5):
return(tf.sin(x)/alpha) return(tf.sin(x)/alpha)





+ 19
- 0
code/fonctions_activations_classiques/notebook.py Dosyayı Görüntüle

# -*- coding: utf-8 -*-
"""
Created on Mon Jan 3 11:48:21 2022

@author: virgi
"""



## Execution des codes montrant réalisant l'apprentissages avec differentes fonction d'activation.
## Les bases d'entrainement et d'aprendtissagfe peuvent etre changé dans chaque ficher , de meme que
## l'architecture des réseaux utilisé

exec(open('x_sin.py').read())
exec(open('sin.py').read())
exec(open('snake.py').read())
exec(open('swish.py').read())
exec(open('tanh_vs_ReLU').read())


BIN
code/fonctions_activations_classiques/prediction_sinus.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_sinus_ReLU.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_sinus_sin.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_sinus_snake.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_sinus_swish.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_sinus_tanh.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_sinus_x+sin.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_snake_8neuronne.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_x2_ReLU.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_x2_sin.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_x2_snake_v2.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_x2_swish.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_x2_tanh.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/prediction_x2_x+sin.png Dosyayı Görüntüle


+ 16
- 21
code/fonctions_activations_classiques/sin.py Dosyayı Görüntüle

from Creation_donnee import * from Creation_donnee import *
import numpy as np import numpy as np


n=20
#création de la base de donnéé
X,Y=creation_sin(-15,-8,n,1,)
X2,Y2=creation_sin(10,18,n,1,)
w=10
n=2000
#création de la base de donnée
X,Y=creation_sin(-2.5,-1,n,w)
X2,Y2=creation_sin(1,1.5,n,w)
X=np.concatenate([X,X2]) X=np.concatenate([X,X2])
Y=np.concatenate([Y,Y2]) Y=np.concatenate([Y,Y2])


n=10000 n=10000
Xv,Yv=creation_sin(-20,20,n,1)
Xv,Yv=creation_sin(-3,3,n,w)








model_sin.add(tf.keras.Input(shape=(1,))) model_sin.add(tf.keras.Input(shape=(1,)))


model_sin.add(tf.keras.layers.Dense(4, activation=sin))
model_sin.add(tf.keras.layers.Dense(4, activation=sin))
model_sin.add(tf.keras.layers.Dense(4, activation=sin))
model_sin.add(tf.keras.layers.Dense(4, activation=sin))
model_sin.add(tf.keras.layers.Dense(4, activation=sin))
# model_sin.add(tf.keras.layers.Dense(64, activation=sin))
# model_sin.add(tf.keras.layers.Dense(64, activation=sin))
# model_sin.add(tf.keras.layers.Dense(64, activation=sin))
# model_sin.add(tf.keras.layers.Dense(64, activation=sin))
# model_sin.add(tf.keras.layers.Dense(64, activation=sin))
# model_sin.add(tf.keras.layers.Dense(64, activation=sin))
model_sin.add(tf.keras.layers.Dense(512, activation=sin))
model_sin.add(tf.keras.layers.Dense(1)) model_sin.add(tf.keras.layers.Dense(1))


opti=tf.keras.optimizers.Adam() opti=tf.keras.optimizers.Adam()


model_sin.summary() model_sin.summary()


model_sin.fit(X, Y, batch_size=1, epochs=10, shuffle='True',validation_data=(Xv, Yv))
model_sin.fit(X, Y, batch_size=16, epochs=150, shuffle='True',validation_data=(Xv, Yv))






plt.figure() plt.figure()
plt.plot(X,Y,'x',label='donnée') plt.plot(X,Y,'x',label='donnée')
plt.plot(Xv,Yv,label="validation") plt.plot(Xv,Yv,label="validation")
plt.plot(X,Y_predis_sin,'o',label='prediction sur les donné avec sin comme activation')
plt.plot(Xv,Y_predis_validation_sin,label='prediction sur la validation avec sin comme activation')
plt.plot(X,Y_predis_sin,'o',label='prediction sur les données avec sin ')
plt.plot(Xv,Y_predis_validation_sin,label='prediction sur la validation avec sin')
plt.legend() plt.legend()
plt.show() plt.show()




"""
Created on Wed Nov 24 16:53:37 2021

@author: virgi
"""


BIN
code/fonctions_activations_classiques/sinus_quasi_fonctionnelle.png Dosyayı Görüntüle


+ 73
- 0
code/fonctions_activations_classiques/snake.py Dosyayı Görüntüle

# -*- coding: utf-8 -*-
"""
Created on Wed Nov 24 16:58:44 2021

@author: virgi
"""





import tensorflow as tf
import matplotlib.pyplot as plt
from fonction_activation import *

from Creation_donnee import *
import numpy as np

w=10
n=2000
#création de la base de donnéé
X,Y=creation_sin(-2.5,-1,n,w)
X2,Y2=creation_sin(3,3.5,n,w)
X=np.concatenate([X,X2])
Y=np.concatenate([Y,Y2])

n=10000
Xv,Yv=creation_sin(-3,3,n,w)





model_sin=tf.keras.models.Sequential()

model_sin.add(tf.keras.Input(shape=(1,)))

# model_sin.add(tf.keras.layers.Dense(64, activation=sin))
# model_sin.add(tf.keras.layers.Dense(64, activation=sin))
# model_sin.add(tf.keras.layers.Dense(64, activation=sin))
# model_sin.add(tf.keras.layers.Dense(64, activation=sin))
# model_sin.add(tf.keras.layers.Dense(512, activation=sin))
# model_sin.add(tf.keras.layers.Dense(64, activation=sin))
model_sin.add(tf.keras.layers.Dense(512, activation=snake))
model_sin.add(tf.keras.layers.Dense(1))

opti=tf.keras.optimizers.Adam()

model_sin.compile(opti, loss='mse', metrics=['accuracy'])


model_sin.summary()

model_sin.fit(X, Y, batch_size=16, epochs=100, shuffle='True',validation_data=(Xv, Yv))




Y_predis_sin=model_sin.predict(X)
Y_predis_validation_sin=model_sin.predict(Xv)




plt.figure()
plt.plot(X,Y,'x',label='donnée')
plt.plot(Xv,Yv,label="validation")
plt.plot(X,Y_predis_sin,'o',label='prediction sur les données avec snake')
plt.plot(Xv,Y_predis_validation_sin,label='prediction sur la validation avec snake')
plt.legend()
plt.show()



BIN
code/fonctions_activations_classiques/snake_donnée_augenté.png Dosyayı Görüntüle


BIN
code/fonctions_activations_classiques/snake_quasi_fonctionnelle.png Dosyayı Görüntüle


+ 11
- 18
code/fonctions_activations_classiques/snake_vs_ReLU.py Dosyayı Görüntüle



from Creation_donnee import * from Creation_donnee import *
import numpy as np import numpy as np
w=10
n=20 n=20
#création de la base de donnéé #création de la base de donnéé
X,Y=creation_sin(-15,-8,n,1,)
X2,Y2=creation_sin(10,18,n,1,)
X,Y=creation_sin(-1.5,-1,n,w)
X2,Y2=creation_sin(1,1.5,n,w)
X=np.concatenate([X,X2]) X=np.concatenate([X,X2])
Y=np.concatenate([Y,Y2]) Y=np.concatenate([Y,Y2])


n=10000 n=10000
Xv,Yv=creation_sin(-20,20,n,1)
Xv,Yv=creation_sin(-3,3,n,w)




model_ReLU=tf.keras.models.Sequential() model_ReLU=tf.keras.models.Sequential()


model_ReLU.add(tf.keras.Input(shape=(1,))) model_ReLU.add(tf.keras.Input(shape=(1,)))


model_ReLU.add(tf.keras.layers.Dense(64, activation='relu'))
model_ReLU.add(tf.keras.layers.Dense(64, activation='relu'))
model_ReLU.add(tf.keras.layers.Dense(64, activation='relu'))
model_ReLU.add(tf.keras.layers.Dense(64, activation='relu'))
model_ReLU.add(tf.keras.layers.Dense(64, activation='relu'))
model_ReLU.add(tf.keras.layers.Dense(512, activation='relu'))





model_ReLU.add(tf.keras.layers.Dense(1)) model_ReLU.add(tf.keras.layers.Dense(1))






model_ReLU.fit(X, Y, batch_size=1, epochs=10, shuffle='True',validation_data=(Xv, Yv))
model_ReLU.fit(X, Y, batch_size=16, epochs=10, shuffle='True',validation_data=(Xv, Yv))








model_snake.add(tf.keras.Input(shape=(1,))) model_snake.add(tf.keras.Input(shape=(1,)))


model_snake.add(tf.keras.layers.Dense(64, activation=snake))
model_snake.add(tf.keras.layers.Dense(64, activation=snake))
model_snake.add(tf.keras.layers.Dense(64, activation=snake))
model_snake.add(tf.keras.layers.Dense(64, activation=snake))
model_snake.add(tf.keras.layers.Dense(64, activation=snake))
model_snake.add(tf.keras.layers.Dense(512, activation=snake))




model_snake.add(tf.keras.layers.Dense(1)) model_snake.add(tf.keras.layers.Dense(1))


model_snake.summary() model_snake.summary()


model_snake.fit(X, Y, batch_size=1, epochs=10, shuffle='True',validation_data=(Xv, Yv))
model_snake.fit(X, Y, batch_size=16, epochs=100, shuffle='True',validation_data=(Xv, Yv))






plt.figure() plt.figure()
plt.plot(X,Y,'x',label='donnée') plt.plot(X,Y,'x',label='donnée')
plt.plot(Xv,Yv,label="validation") plt.plot(Xv,Yv,label="validation")
plt.plot(X,Y_predis_snake,'o',label='prediction sur les donné avec snake comme activation')
plt.plot(Xv,Y_predis_validation_snake,label='prediction sur la validation avec snake comme activation')
plt.plot(X,Y_predis_snake,'o',label='prediction sur les données avec snake')
plt.plot(Xv,Y_predis_validation_snake,label='prediction sur la validation avec snake')
plt.legend() plt.legend()
plt.show() plt.show()



+ 10
- 13
code/fonctions_activations_classiques/swish.py Dosyayı Görüntüle

from Creation_donnee import * from Creation_donnee import *
import numpy as np import numpy as np


n=20
w=10
n=20000
#création de la base de donnéé #création de la base de donnéé
X,Y=creation_sin(-15,-8,n,1,)
X2,Y2=creation_sin(10,18,n,1,)
X,Y=creation_x2(-2.5,-1,n)
X2,Y2=creation_x2(1,1.5,n)
X=np.concatenate([X,X2]) X=np.concatenate([X,X2])
Y=np.concatenate([Y,Y2]) Y=np.concatenate([Y,Y2])


n=10000 n=10000
Xv,Yv=creation_sin(-20,20,n,1)

Xv,Yv=creation_x2(-3,3,n)








model_swish.add(tf.keras.Input(shape=(1,))) model_swish.add(tf.keras.Input(shape=(1,)))


model_swish.add(tf.keras.layers.Dense(64, activation='swish'))
model_swish.add(tf.keras.layers.Dense(64, activation='swish'))
model_swish.add(tf.keras.layers.Dense(64, activation='swish'))
model_swish.add(tf.keras.layers.Dense(64, activation='swish'))
model_swish.add(tf.keras.layers.Dense(64, activation='swish'))
model_swish.add(tf.keras.layers.Dense(512, activation='swish'))





model_swish.add(tf.keras.layers.Dense(1)) model_swish.add(tf.keras.layers.Dense(1))


model_swish.summary() model_swish.summary()


model_swish.fit(X, Y, batch_size=1, epochs=10, shuffle='True',validation_data=(Xv, Yv))
model_swish.fit(X, Y, batch_size=16, epochs=50, shuffle='True',validation_data=(Xv, Yv))






plt.figure() plt.figure()
plt.plot(X,Y,'x',label='donnée') plt.plot(X,Y,'x',label='donnée')
plt.plot(Xv,Yv,label="validation") plt.plot(Xv,Yv,label="validation")
plt.plot(X,Y_predis_swish,'o',label='prediction sur les donné avec swish comme activation')
plt.plot(Xv,Y_predis_validation_swish,label='prediction sur la validation avec swish comme activation')
plt.plot(X,Y_predis_swish,'o',label='prediction sur les données avec swish')
plt.plot(Xv,Y_predis_validation_swish,label='prediction sur la validation avec swish')
plt.legend() plt.legend()
plt.show() plt.show()



BIN
code/fonctions_activations_classiques/tanh.png Dosyayı Görüntüle


+ 16
- 21
code/fonctions_activations_classiques/tanh_vs_ReLU.py Dosyayı Görüntüle



from Creation_donnee import * from Creation_donnee import *
import numpy as np import numpy as np
n=20
w=10
n=20000
#création de la base de donnéé #création de la base de donnéé
X,Y=creation_sin(-15,-8,n,1,)
X2,Y2=creation_sin(10,18,n,1,)
X,Y=creation_x2(-2.5,-1,n)
X2,Y2=creation_x2(1,1.5,n)
X=np.concatenate([X,X2]) X=np.concatenate([X,X2])
Y=np.concatenate([Y,Y2]) Y=np.concatenate([Y,Y2])


n=10000 n=10000
Xv,Yv=creation_sin(-20,20,n,1)
Xv,Yv=creation_x2(-3,3,n)





model_ReLU=tf.keras.models.Sequential() model_ReLU=tf.keras.models.Sequential()


model_ReLU.add(tf.keras.Input(shape=(1,))) model_ReLU.add(tf.keras.Input(shape=(1,)))


model_ReLU.add(tf.keras.layers.Dense(64, activation='relu'))
model_ReLU.add(tf.keras.layers.Dense(64, activation='relu'))
model_ReLU.add(tf.keras.layers.Dense(64, activation='relu'))
model_ReLU.add(tf.keras.layers.Dense(64, activation='relu'))
model_ReLU.add(tf.keras.layers.Dense(64, activation='relu'))
model_ReLU.add(tf.keras.layers.Dense(512, activation='relu'))





model_ReLU.add(tf.keras.layers.Dense(1)) model_ReLU.add(tf.keras.layers.Dense(1))






model_ReLU.fit(X, Y, batch_size=1, epochs=10, shuffle='True',validation_data=(Xv, Yv))
model_ReLU.fit(X, Y, batch_size=16, epochs=5, shuffle='True',validation_data=(Xv, Yv))








model_tanh.add(tf.keras.Input(shape=(1,))) model_tanh.add(tf.keras.Input(shape=(1,)))


model_tanh.add(tf.keras.layers.Dense(64, activation='tanh'))
model_tanh.add(tf.keras.layers.Dense(64, activation='tanh'))
model_tanh.add(tf.keras.layers.Dense(64, activation='tanh'))
model_tanh.add(tf.keras.layers.Dense(64, activation='tanh'))
model_tanh.add(tf.keras.layers.Dense(64, activation='tanh'))
model_tanh.add(tf.keras.layers.Dense(512, activation='tanh'))





model_tanh.add(tf.keras.layers.Dense(1)) model_tanh.add(tf.keras.layers.Dense(1))


model_tanh.summary() model_tanh.summary()


model_tanh.fit(X, Y, batch_size=1, epochs=10, shuffle='True',validation_data=(Xv, Yv))
model_tanh.fit(X, Y, batch_size=16, epochs=50, shuffle='True',validation_data=(Xv, Yv))






plt.figure() plt.figure()
plt.plot(X,Y,'x',label='donnée') plt.plot(X,Y,'x',label='donnée')
plt.plot(Xv,Yv,label="validation") plt.plot(Xv,Yv,label="validation")
plt.plot(X,Y_predis_ReLU,'o',label='prediction sur les donné')
plt.plot(Xv,Y_predis_validation_ReLU,label='prediction sur la validation')
plt.plot(X,Y_predis_ReLU,'o',label='prediction sur les données avec ReLU')
plt.plot(Xv,Y_predis_validation_ReLU,label='prediction sur la validation avec ReLU')
plt.legend() plt.legend()
plt.show() plt.show()


plt.figure() plt.figure()
plt.plot(X,Y,'x',label='donnée') plt.plot(X,Y,'x',label='donnée')
plt.plot(Xv,Yv,label="validation") plt.plot(Xv,Yv,label="validation")
plt.plot(X,Y_predis_tanh,'o',label='prediction sur les donné avec tanh comme activation')
plt.plot(Xv,Y_predis_validation_tanh,label='prediction sur la validation avec tanh comme activation')
plt.plot(X,Y_predis_tanh,'o',label='prediction sur les données avec tanh ')
plt.plot(Xv,Y_predis_validation_tanh,label='prediction sur la validation avec tanh ')
plt.legend() plt.legend()
plt.show() plt.show()



+ 11
- 12
code/fonctions_activations_classiques/x_sin.py Dosyayı Görüntüle

from Creation_donnee import * from Creation_donnee import *
import numpy as np import numpy as np


n=20
w=10
n=20000
#création de la base de donnéé #création de la base de donnéé
X,Y=creation_sin(-15,-8,n,1,)
X2,Y2=creation_sin(10,18,n,1,)
X,Y=creation_x2(-2.5,-1,n)
X2,Y2=creation_x2(1,1.5,n)
X=np.concatenate([X,X2]) X=np.concatenate([X,X2])
Y=np.concatenate([Y,Y2]) Y=np.concatenate([Y,Y2])


n=10000 n=10000
Xv,Yv=creation_sin(-20,20,n,1)
Xv,Yv=creation_x2(-3,3,n)









model_xsin.add(tf.keras.Input(shape=(1,))) model_xsin.add(tf.keras.Input(shape=(1,)))


model_xsin.add(tf.keras.layers.Dense(64, activation=x_sin))
model_xsin.add(tf.keras.layers.Dense(64, activation=x_sin))
model_xsin.add(tf.keras.layers.Dense(64, activation=x_sin))
model_xsin.add(tf.keras.layers.Dense(64, activation=x_sin))
model_xsin.add(tf.keras.layers.Dense(64, activation=x_sin))
model_xsin.add(tf.keras.layers.Dense(512, activation=x_sin))





model_xsin.add(tf.keras.layers.Dense(1)) model_xsin.add(tf.keras.layers.Dense(1))


model_xsin.summary() model_xsin.summary()


model_xsin.fit(X, Y, batch_size=1, epochs=10, shuffle='True',validation_data=(Xv, Yv))
model_xsin.fit(X, Y, batch_size=16, epochs=100, shuffle='True',validation_data=(Xv, Yv))






plt.figure() plt.figure()
plt.plot(X,Y,'x',label='donnée') plt.plot(X,Y,'x',label='donnée')
plt.plot(Xv,Yv,label="validation") plt.plot(Xv,Yv,label="validation")
plt.plot(X,Y_predis_xsin,'o',label='prediction sur les donné avec x+sin comme activation')
plt.plot(Xv,Y_predis_validation_xsin,label='prediction sur la validation avec x+sin comme activation')
plt.plot(X,Y_predis_xsin,'o',label='prediction sur les données avec x+sin ')
plt.plot(Xv,Y_predis_validation_xsin,label='prediction sur la validation avec x+sin')
plt.legend() plt.legend()
plt.show() plt.show()



Loading…
İptal
Kaydet